If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+2n-72=0
a = 4; b = 2; c = -72;
Δ = b2-4ac
Δ = 22-4·4·(-72)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-34}{2*4}=\frac{-36}{8} =-4+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+34}{2*4}=\frac{32}{8} =4 $
| X+.2x=195 | | 13.7=2.5x=6.4 | | 9d-18=54 | | 4(u−14)−11=-3 | | 4(u−14)−11=–3 | | 6t+3=75 | | 4(u-14)−11=-3 | | 2(j+19)=92 | | 0.75(6+x)=12x | | 4(3x-2)=88+8x | | x2-7x=-98 | | 64-2x=3x-45 | | 2×w+4=34 | | 7+10n=27 | | -4=-1-p/2 | | 3x+3-5x+7=9 | | 3x+17=28 | | 4-3=c-3 | | 7x+12=6x+9} | | 18=5x+1/3(18-3x) | | -20=7(-2r+2)-4r | | 12x-25+50=180 | | (1/7)2x=(1/7)x+15 | | 6x+5=7+2× | | 6+1/5x=4/5x-3 | | 2x2+36x=-108 | | 5x-9=8x+7 | | x-1.3=0.9 | | g(2)=5g(0) | | 9=3+3c | | 45-12=-5n+15 | | 3/4x+1/2x+5/6=3/9 |